Least squares problems with inequality constraints as quadratic constraints
نویسنده
چکیده
Linear least squares problems with box constraints are commonly solved to find model parameters within bounds based on physical considerations. Common algorithms include Bounded Variable Least Squares (BVLS) and the Matlab function lsqlin. Here, we formulate the box constraints as quadratic constraints, and solve the corresponding unconstrained regularized least squares problem. Box constraints as quadratic constraints is an efficient approach because the optimization problem has a known unique solution. The effectiveness of the proposed algorithm is investigated through solving three benchmark problems and a hydrological application. Results are compared with solutions found by lsqlin, and the quadraticaly constrained formulation is solved using the L-curve, maximum a posteriori estimation (MAP), and the χ2 regularization methods. The χ2 regularization method with quadratic constraints is the most effective method for solving least squares problems with box constraints.
منابع مشابه
Solving Mixed-Integer Quadratic Programs Via Nonnegative Least Squares
Abstract: This paper proposes a new algorithm for solving Mixed-Integer Quadratic Programming (MIQP) problems. The algorithm is particularly tailored to solving small-scale MIQPs such as those that arise in embedded hybrid Model Predictive Control (MPC) applications. The approach combines branch and bound (B&B) with nonnegative least squares (NNLS), that are used to solve Quadratic Programming ...
متن کاملStrong Duality in Nonconvex Quadratic Optimization with Two Quadratic Constraints
We consider the problem of minimizing an indefinite quadratic function subject to two quadratic inequality constraints. When the problem is defined over the complex plane we show that strong duality holds and obtain necessary and sufficient optimality conditions. We then develop a connection between the image of the real and complex spaces under a quadratic mapping, which together with the resu...
متن کاملGeneralized System Identification with Stable Spline Kernels
Regularized least-squares approaches have been successfully applied to linear system identification. Recent approaches use quadratic penalty terms on the unknown impulse response defined by stable spline kernels, which control model space complexity by leveraging regularity and bounded-input bounded-output stability. This paper extends linear system identification to a wide class of nonsmooth s...
متن کاملA NEW APPROACH FOR SOLVING FULLY FUZZY QUADRATIC PROGRAMMING PROBLEMS
Quadratic programming (QP) is an optimization problem wherein one minimizes (or maximizes) a quadratic function of a finite number of decision variable subject to a finite number of linear inequality and/ or equality constraints. In this paper, a quadratic programming problem (FFQP) is considered in which all cost coefficients, constraints coefficients, and right hand side are characterized by ...
متن کاملLeast Squares Problems with Absolute Quadratic Constraints
This paper analyzes linear least squares problems with absolute quadratic constraints. We develop a generalized theory following Bookstein’s conic-fitting and Fitzgibbon’s direct ellipse-specific fitting. Under simple preconditions, it can be shown that a minimum always exists and can be determined by a generalized eigenvalue problem. This problem is numerically reduced to an eigenvalue problem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008